A new method based on fourth kind Chebyshev wavelets to a fractional-order model of HIV infection of CD4+T cells
Authors
Abstract:
This paper deals with the application of fourth kind Chebyshev wavelets (FKCW) in solving numerically a model of HIV infection of CD4+T cells involving Caputo fractional derivative. The present problem is a system of nonlinear fractional differential equations. The goal is to approximate the solution in the form of FKCW truncated series. To do this, an operational matrix of fractional integration is constructed for these wavelets. This matrix transforms the problem to a nonlinear system of algebraic equations. Solving the new system, enables one to identify the unknown coeffcients of expansion. Numerical results are compared with other existing methods to illustrate the applicability of the method.
similar resources
Numerical solution of a fractional order model of HIV infection of CD4+T cells.
In this paper we consider a fractional order model of HIV infection of CD4+T cells and we transform this fractional order system of ordinary differential equations to a system of weakly singular integral equations. Afterwards we propose a Nystrom method for solving resulting system, convergence result and order of convergence is obtained by using conditions of existence and uniqueness of solut...
full textNumerical and Bifurcations Analysis for Multi- Order Fractional Model of Hiv Infection of Cd4t-cells
solution of the model. In this way, the fractional differential equations are reduced to an algebraic easily solvable system. The obtained solutions are accurate and the method is very efficient and simple in implementation. With the help of bifurcation analysis, we acquired the critical value of viral death rate, that is, if viral death rate is greater than the critical value then level of vir...
full textA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
full textNumerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells
In this article, we present a fractional order HIV-1 infection model of CD4+ T-cell. We analyze the effect of the changing the average number of the viral particle N with initial conditions of the presented model. The Laplace Adomian decomposition method is applying to check the analytical solution of the problem. We obtain the solutions of the fractional order HIV-1 model in the form of infini...
full textStability Analysis of a Fractional Order Model of HIV virus and AIDS Infection in the Community
In this paper a non-linear model with fractional order is presented for analyzing and controlling the spread of HIV virus. Both the disease-free equilibrium and the endemic equilibrium are found and their stability is discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential role in the stability of the ...
full textA nonstandard finite difference scheme for solving fractional-order model of HIV-1 infection of CD4^{+} t-cells
In this paper, we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells. We study the effect of the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of the presented model. The nonstandard finite difference (NSFD) scheme is implemented to study the dynamic behaviors in the fractional--order HIV-1 ...
full textMy Resources
Journal title
volume 6 issue 3
pages 353- 371
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023